13 research outputs found

    In-hospital outcomes and predictors of mortality in acute myocardial infarction with cardiogenic shock treated by primary angioplasty: data from the InCor registry

    Get PDF
    INTRODUÇÃO: O choque cardiogênico é a maior causa de morte em pacientes com infarto agudo do miocárdio com supradesnivelamento do segmento de ST (IAMCSST). O presente estudo avaliou pacientes com IAMCSST e choque cardiogênico submetidos a intervenção coronária percutânea primária com o objetivo de estabelecer seu perfil e os preditores de mortalidade hospitalar. MÉTODOS: Registro unicêntrico, incluindo 100 pacientes avaliados no período de 2001 a 2009 quanto a características clínicas, angiográficas e do procedimento, e a desfechos intra-hospitalares. Por análise multivariada foram determinados preditores independentes da mortalidade hospitalar. RESULTADOS: Com relação às características clínicas, foi observada alta prevalência de fatores de risco, sendo a taxa de sucesso angiográfico de 92%, apesar da complexidade das lesões (83,1% do tipo B2/C). A artéria mais acometida foi a descendente anterior (45%), tendo o padrão multiarterial ocorrido em 73% dos casos. A taxa de mortalidade foi de 45%, sendo seus preditores independentes o padrão multiarterial [odds ratio (OR) 2,62; intervalo de confiança de 95% (IC 95%) 1,16-5,90] e o fluxo coronário TIMI < 3 ao final do procedimento (OR 2,11, IC 95% 1,48-3,02). CONCLUSÕES: Os pacientes com IAMCSST complicado por choque cardiogênico apresentaram características clínicas e angiográficas de alto risco e, apesar do alto sucesso angiográfico do procedimento, altas taxas de mortalidade. Foram preditores independentes de mortalidade o padrão multiarterial e fluxo TIMI < 3 ao final do procedimento

    Robust 3D Motion Tracking for Robotic-Assisted Beating Heart Surgery

    No full text
    Les dernières décennies ont vu le développement important de la chirurgie mini-invasive. L'acte mini-invasif apporte de nombreux avantages pour les patients: séjour plus court à l'hôpital, réduction des coûts, un traumatisme réduit et la diminution des complications postopératoires. Dans ce contexte, l'assistance robotique est capable de rendre l'acte chirurgical plus intuitif et plus sûr pour les chirurgiens. Dans le domaine de la chirurgie cardiaque mini-invasive, les mouvements respiratoires et cardiaques sont deux sources de perturbations importantes pour les chirurgiens. Malgré l'existence de versions miniaturisées de stabilisateurs cardiaques mécaniques, le mouvement résiduel est encore considérable et doit être manuellement compensé par le chirurgien. Dans ces travaux de thèse, des techniques de suivi visuel pour l'estimation du mouvement 3D du coeur ont été développées. Pour la compensation active des mouvements physiologiques, seules les structures naturelles sur la surface du coeur sont utilisées. Deux contributions dans le domaine de la compensation des mouvements physiologiques pour la chirurgie cardiaque robotisée ont été proposées. La première est une méthode de suivi visuel 3D basée sur un modèle déformable de type ``plaque mince'' et une paramétrisation efficace pour le suivi 3D en images stéréo-endoscopiques. La seconde contribution est une méthode de suivi robuste qui prédit le mouvement futur du coeur pour contourner des problèmes comme les occlusions par les instruments chirurgicaux et les éventuelles réflexions spéculaires. La méthode de prédiction est basée sur une série de Fourier estimée à travers un filtre de Kalman étendu.The past decades have witnessed the notable development of minimally invasive surgery (MIS). The benefits of this modality of surgery for patients are numerous, shortening convalescence, reducing trauma and surgery costs. In this context, robotic assistance aims to make the surgical act more intuitive and safer. In the domain of cardiac MIS, heartbeat and respiration represent two important sources of disturbances. Even though miniaturized versions of heart stabilizers have been conceived for the MIS scenario, residual motion is still considerable and has to be manually canceled by the surgeon. In this thesis, the focus is put on computer vision techniques for estimating the 3D motion of the heart relying solely on natural structures on the heart surface for active compensation of physiological motions. Two main contributions on the subject of motion compensation for robotized cardiac MIS are proposed. The first is a visual tracking method for estimating the 3D deformation of a region of interest on the heart surface. A thin-plate spline model is used for representing the heart surface deformations and a novel efficient parameterization for 3D tracking using stereo endoscopic images is proposed. The method is robust to illumination variations and large tissue deformations. The second contribution is a robust visual tracking method using motion prediction. A time-varying dual Fourier series for modeling the quasi-periodic beating heart motion is proposed. For estimating the parameters of the Fourier series, a probabilistic framework is based on the Extended Kalman filter (EKF) is used. The visual tracking method is integrated in the heart motion prediction framework, creating an unified framework for estimating the temporal motion and spatial deformation of the heart surface. Experimental results have shown the effectiveness of the proposed methods

    Rastreamento do contorno do ventrículo esquerdo em imagens de ressonância magnética usando filtragem estocástica

    No full text
    Monografia (graduação)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Elétrica, 2006.A segmentação e rastreamento do contorno do ventrículo esquerdo em imagens de ressonância magnética é um trabalho desafiador. O contorno do ventrículo esquerdo (VE) oferece dados importantes sobre o comportamento do coração, sendo útil para descoberta de disfunções, para o cálculo de parâmetros como fluxo sangüíneo que circula no coração etc. Para tornar o rastreamento do contorno do VE robusto à ruído, baixo contraste e outras complicações, filtros estocásticos são propostos para modelar as incertezas na localização do contorno real nas imagens. O algoritmo proposto neste trabalho realiza, em tempo real, o rastreamento em uma seqüência de imagens de IRM compreendendo diversos ciclos cardíacos. Seguindo uma abordagem baseada em contornos ativos, pouco conhecimento sobre a deformação das paredes do ventrículo é requerido para a realização do rastreamento. Finalmente, o método proposto foi avaliado usando uma seqüência de imagens cedida por pesquisadores da University of Southern of California (USC).The segmentation and tracking of the left ventricle’s contour in magnetic resonance images is a challenging task. Significant knowledge of the heart’s dynamics can be acquired through the tracking of left ventricle (LV). Therefore, important parameters such as blood flow can be calculated and also heart diseases and disfunctions can be detected. In face of complications such as noise, low contrast and other image imperfections, stochastic filters are proposed to robustify the tracking, by dealing with the uncertanty related to the real contour’s detection in every frame. This work proposes an algorithm for real time tracking of the left ventricle’s contour over an image sequence depicting various heart cicles. Basing this algorithm on active contours, little knowledge of the heart wall’s deformation is needed to perform the tracking. Finally, the proposed method is evaluated over an image sequence provided by researches from the University of Southern California (USC)

    Suivi 3D Robuste pour la Chirurgie Cardiaque Robotisée

    No full text
    Les dernières décennies ont vu le développement important de la chirurgie mini-invasive. L'acte mini-invasif apporte de nombreux avantages pour les patients: séjour plus court à l'hôpital, réduction des coûts, un traumatisme réduit et la diminution des complications postopératoires. Dans ce contexte, l'assistance robotique est capable de rendre l'acte chirurgical plus intuitif et plus sûr pour les chirurgiens. Dans le domaine de la chirurgie cardiaque mini-invasive, les mouvements respiratoires et cardiaques sont deux sources de perturbations importantes pour les chirurgiens. Malgré l'existence de versions miniaturisées de stabilisateurs cardiaques mécaniques, le mouvement résiduel est encore considérable et doit être manuellement compensé par le chirurgien. Dans ces travaux de thèse, des techniques de suivi visuel pour l'estimation du mouvement 3D du coeur ont été développées. Pour la compensation active des mouvements physiologiques, seules les structures naturelles sur la surface du coeur sont utilisées. Deux contributions dans le domaine de la compensation des mouvements physiologiques pour la chirurgie cardiaque robotisée ont été proposées. La première est une méthode de suivi visuel 3D basée sur un modèle déformable de type plaque mince'' et une paramétrisation efficace pour le suivi 3D en images stéréo-endoscopiques. La seconde contribution est une méthode de suivi robuste qui prédit le mouvement futur du coeur pour contourner des problèmes comme les occlusions par les instruments chirurgicaux et les éventuelles réflexions spéculaires. La méthode de prédiction est basée sur une série de Fourier estimée à travers un filtre de Kalman étendu.The past decades have witnessed the notable development of minimally invasive surgery (MIS). The benefits of this modality of surgery for patients are numerous, shortening convalescence, reducing trauma and surgery costs. In this context, robotic assistance aims to make the surgical act more intuitive and safer. In the domain of cardiac MIS, heartbeat and respiration represent two important sources of disturbances. Even though miniaturized versions of heart stabilizers have been conceived for the MIS scenario, residual motion is still considerable and has to be manually canceled by the surgeon. In this thesis, the focus is put on computer vision techniques for estimating the 3D motion of the heart relying solely on natural structures on the heart surface for active compensation of physiological motions. Two main contributions on the subject of motion compensation for robotized cardiac MIS are proposed. The first is a visual tracking method for estimating the 3D deformation of a region of interest on the heart surface. A thin-plate spline model is used for representing the heart surface deformations and a novel efficient parameterization for 3D tracking using stereo endoscopic images is proposed. The method is robust to illumination variations and large tissue deformations. The second contribution is a robust visual tracking method using motion prediction. A time-varying dual Fourier series for modeling the quasi-periodic beating heart motion is proposed. For estimating the parameters of the Fourier series, a probabilistic framework is based on the Extended Kalman filter (EKF) is used. The visual tracking method is integrated in the heart motion prediction framework, creating an unified framework for estimating the temporal motion and spatial deformation of the heart surface. Experimental results have shown the effectiveness of the proposed methods.MONTPELLIER-BU Sciences (341722106) / SudocSudocFranceF

    Robust 3D visual tracking for robotic-assisted cardiac interventions

    No full text
    In the context of minimally invasive cardiac surgery, active vision-based motion compensation schemes have been proposed for mitigating problems related to physiological motion. However, robust and accurate visual tracking is a difficult task. The purpose of this paper is to present a hybrid tracker that estimates the heart surface deformation using the outputs of multiple visual tracking techniques. In the proposed method, the failure of an individual technique can be circumvented by the success of others, enabling the robust estimation of the heart surface deformation with increased spatial resolution. In addition, for coping with the absence of visual information due to motion blur or occlusions, a temporal heart motion model is incorporated as an additional support for the visual tracking task. The superior performance of the proposed technique compared to existing techniques individually is demonstrated through experiments conducted on recorded images of an in vivo minimally invasive CABG using the DaVinci robotic platform

    Tracking and Classification of Head Movement for Augmentative and Alternative Communication Systems

    No full text
    The use of assistive technologies can mitigate or reduce the challenges faced by individuals with motor disabilities to use computer systems. However, those who feature severe involuntary movements often have fewer options at hand. This work describes an application that can recognize the user’s head using a conventional webcam, track its motion, model the desired functional movement, and recognize it to enable the use of a virtual keyboard. The proposed classifier features a flexible structure and may be personalized for different user need. Experimental results obtained with participants with no neurological disorders have shown that classifiers based on Hidden Markov Models provided similar or better performance than a classifier based on position threshold. However, motion segmentation and interpretation modules were sensitive to involuntary movements featured by participants with cerebral palsy that took part in the study

    Integration of New Features for Telerobotic Surgery into The Mirosurge System

    No full text
    Minimally invasive robotic surgery has gained wide acceptance recently. Computer-aided features to assist the surgeon during these interventions may help to develop safer, faster, and more accurate procedures. Especially physiological motion compensation of the beating heart and online soft tissue modelling are promising features that were developed recently. This paper presents the integration of these new features into the minimally invasive robotic surgery platform MiroSurge. A central aim of this research platform is to enable evaluation and comparison of new functionalities for minimally invasive robotic surgery. The system structure of MiroSurge is presented as well as the interfaces for the new functionalities. Some details about the modules for motion tracking and for soft tissue simulation are given. Results are shown with an experimental setup that includes a heart motion simulator and dedicated silicone organ models. Both features are integrated seamlessly and work reliably in the chosen setup. The MiroSurge platform thus shows the potential to provide valuable results in evaluating new functionalities for minimally invasive robotic surgery
    corecore